Aktuelles

[Podcast] Claudia Elisabeth Wulz: Von den kleinsten Teilchen bis zum Kosmos

by | 4. Sep 2023 | Aktuelles, Unterricht

Am Mittwoch, den 28. Juni 2023 hat Univ.-Doz. DI Dr. Claudia Elisabeth Wulz, Forscherin der Österreichischen Akademie der Wissenschaften am CERN, vor den Schüler*innen der 7. Klassen einen Vortrag mit dem Titel „Von den kleinsten Teilchen bis zum Kosmos“ gehalten, in welchem sie ein breites Spektrum an Themen aus der Teilchen-, Quanten- und Astrophysik abdeckte.

In ihrer kurzweiligen, multimedialen Präsentation zeigte sie Teilchenbeschleuniger am CERN in Genf, gab den Zuhörer*innen einen leicht verständlichen Einblick in die Krümmung der Raumzeit, welche Albert Einstein in seiner Allgemeinen Relativitätstheorie beschrieb, demonstrierte Methoden zum experimentellen Nachweis von Gravitationswellen und erläuterte Fakten zu Schwarzen Löchern. Zusätzlich setzte sie den Urknall in den Kontext der Entwicklung des Universums bzw. dessen ständiger Ausdehnung und erklärte das Standardmodell der Teilchenphysik, wobei die verschiedenen Teilchen-Arten, die Mittlerteilchen der vier fundamentalen Kräfte und das Higgs-Boson nicht zu kurz kamen. Zusätzlich versuchte sie, den Schüler*innen die Größe des größten Zirkularbeschleunigers, des Large Hadron Colliders (LHC, Umfang: 27 Kilometer), mithilfe eines Luftbildes zu illustrieren und zeigte beeindruckende Innen-Ansichten der Anlagen. Durch die Hervorhebung der Wichtigkeit der sogenannten „Dunklen Materie“ für den Aufbau des Universums gelang es ihr, einen Bogen zwischen Teilchen- und Astrophysik zu spannen, abschließend erwähnte sie die wichtigsten Aspekte der Quantentheorie und der Verschränkung von Teilchen.

Im Anschluss an den informativen, hochspannenden Vortrag haben Prof. Martin Haberbauer und Michael Himmelbauer die Physikerin zum Interview gebeten, welches in folgendem Podcast zu hören ist:
(Begriffserklärungen der im Podcast erwähnten Fachbegriffe sind am Ende des Beitrags zu finden)

 

Gästin: Univ.-Doz. DI Dr. Claudia Elisabeth Wulz
Interviewer: Michael Himmelbauer
Technische Umsetzung: Mag. Martin Haberbauer

Eine Auswahl aller Podcasts ist außerdem auf unserer Podcasts-Seite zu finden.

written by Michael Himmelbauer

 

Begriffserklärungen:
(in alphabetisch aufsteigender Reihenfolge)

  • Antimaterie: Aus Antiteilchen bestehende Materie. Materie ist ein wissenschaftlicher Begriff für alles, das uns umgibt und eine Masse besitzt.
  • Antiteilchen: Ein Teilchen mit gleich großer Masse, aber entgegengesetzter Ladung.
  • Äther: Physiker vor Albert Einstein gingen davon aus, dass Licht aufgrund des Auftretens von Beugung, Interferenz und Polarisation ein Ausbreitungsmedium brauche. Da es sich im gesamten Universum ausbreitet, müsste dieses mit einem hypothetischen Stoff names Äther erfüllt sein, welcher jedoch widersprüchliche Eigenschaften haben müsste (eine kleine Dichte, da ansonsten die Himmelskörper stark abgebremst würden, und die Eigenschaften eines Festkörpers, um die hohe Ausbreitungsgeschwindigkeit des Lichts erklären zu können, zudem breiten sich mechanische Transversalwellen (Querwellen: Schwingungs- und Ausbreitungsrichtung stehen normal aufeinander) nicht in Gasen aus). Zusätzlich wäre die Lichtgeschwindigkeit richtungsabhängig (am kleinsten in Bewegungsrichtung der Erde, am größten entgegen ihrer Bewegungsrichtung). Dieser Stoff konnte experimentell nicht nachgewiesen werden, weshalb Einstein postulierte, dass es ihn nicht gebe.
  • Drehimpuls: Eine physikalische Größe, mithilfe der Wechselwirkungen zwischen rotierenden, d.h. sich drehenden Körpern beschrieben werden können.
  • Dunkle Energie: Aufgrund der Gravitationskraft müsste sich das Universum langsamer ausdehnen, als es tatsächlich beobachtet wird. Aus diesem Grund wurde eine weitere, unbekannte (= dunkle) Energieform eingeführt, welche der Gravitationskraft entgegenwirkt und somit die Ausbreitung vorantreibt.
  • Dunkle Materie: Die sichtbare, d.h. Licht reflektierende Materie war nicht ausreichend, um die durch die Gravitationskraft verursachte Anziehung der Galaxien trotz ihrer hohen Geschwindigkeiten erklären zu können. Aus diesem Grund wurde eine nicht sichtbare (= dunkle), aber dennoch vorhandene Materie-Form postuliert, welche die Anziehung zwischen den Planeten, Galaxien, etc. verstärkt.
  • Einstein, Albert: Ein von 1879 bis 1955 lebender Physiker, welcher unter anderem die Spezielle sowie die Allgemeine Relativitätstheorie entwickelte, welche die über Jahrhunderte etablierte Newton’sche Mechanik plötzlich infrage stellte. 1921 erhielt er den Nobelpreis für Physik, jedoch für die Erklärung des photoelektrischen Effekts (das Herauslösen von Elektronen aus einem Metall bei Bestrahlung mit Licht, was auch als Energieübertragung der Photonen-Energie auf die Elektronen verstanden werden kann).
  • Elektromagnetische Kraft: Diese steht für die Gesamtheit aus Elektrischer (anziehend oder abstoßend zwischen elektrischen Ladungen), Magnetischer (bspw. zwischen Magneten) und Molekular-Kraft (Kohäsions- und Adhäsionskraft zwischen Stoffen).
  • GeV = Giga-Elektronenvolt: Ein Elektronenvolt ist die Energiemenge, welche ein Teilchen mit Elementarladung (etwa ein Elektron oder Proton) erhält, wenn eine Spannung von einem Volt zur Beschleunigung angelegt wird. Die Vorsilbe „Giga“ bedeutet „Milliarde“, ein Giga-Elektronenvolt sind also 1 * 109 Elektronenvolt. Da die Elementarladung 1.6 * 10-19 Coulomb beträgt, entspricht 1 Elektronenvolt 1.6 * 10-19 Joule (E = Q * U, Energie = Ladungsmenge * Spannung).
  • Gravitationskraft: Die Kraft, mit der sich zwei Körper gegenseitig anziehen. Diese kann aufgrund der geringen Massen im Mikrokosmos vernachlässigt werden.
  • Graviton: Das Mittlerteilchen der Gravitationskraft. Dieses konnte bisher, im Vergleich zum Photon (Mittlerteilchen der Elektromagnetischen Kraft), Gluon (Mittlerteilchen der Farbkraft, welche zwischen den Quarks wirkt) und Boson (Mittlerteilchen der Schwachen Kraft), nicht experimentell nachgewiesen werden.
  • Higgs-Boson / Higgs-Teilchen: Das Mittlerteilchen des Higgs-Feldes. Durch Wechselwirkung mit dem das gesamte Universum ausfüllenden Higgs-Feld erhält die Materie ihre Masse.
  • Krümmung des Raumes: Massen krümmen den sie umgebenden Raum in einer höheren, vom Menschen nicht wahrnehmbaren Dimension, was mit dem Wickeln eines Papiers um eine Kugel vergleichbar ist, wenn angenommen wird, dass darauf befindliche Lebewesen nur zwei Dimensionen wahrnehmen können. Durch diese Krümmung des Raumes kommen Körper einander näher.
  • LHC = Large Hadron Collider: Ein 2008 in Betrieb genommener Zirkularbeschleuniger am CERN (Europäische Organisation für Kernforschung in Genf, Schweiz), welcher unterirdisch errichtet wurde und einen Umfang von 26.7 Kilometer hat.
  • Linearbeschleuniger: Ein gerader, d.h. nicht ringförmiger Teilchenbeschleuniger, welcher aus ringförmigen Elektroden besteht. Mithilfe elektrischer Felder werden geladene Teilchen beschleunigt.
  • Mittlerteilchen: In der Quantenmechanik werden Kräfte als Austausch von Mittlerteilchen betrachtet. Diese existieren nur für kurze Zeit, wobei Lebensdauer und Masse aufgrund der Heisenberg’schen Energie-Zeit-Unschärfe indirekt proportional zueinander sind. Schwere Mittlerteilchen, beispielsweise W- und Z-Bosonen (welche die Schwache Kraft vermitteln), existieren daher für eine sehr geringe Zeit, während masselose Mittlerteilchen wie das Photon eine unendlich lange Lebensdauer haben.
  • Myon: Ein Teilchen des Standardmodells der Teilchenphysik, welches elementar ist, also nicht aus noch kleineren Teilchen besteht, und daher zur Teilchen-Familie der Leptonen gehört.
  • Newton, Isaac: Ein von 1643 bis 1727 lebender englischer Physiker, welcher das Gravitationsgesetz sowie die Newton’schen Axiome (Trägheitssatz, Dynamisches Grundgesetz, Wechselwirkungsgesetz), welche die Grundlage der Mechanik bilden, aufstellte.
  • Paarbildung: Bildung eines Paares aus Teilchen und dazugehörigem Antiteilchen aus Energie.
  • Paarvernichtung: Reaktion von Teilchen und dazugehörigem Antiteilchen, wobei Energie in Form einer elektromagnetischen Welle bzw. eines Photons frei wird.
  • Photonen: Energiepakete, aus denen Licht besteht. Mithilfe von Photonen können Teilchen-Eigenschaften des Lichts erklärt werden, beispielsweise Photo-Effekt (vollständige Energie-Übertragung auf ein Elektron), Compton-Effekt (teilweise Energie-Übertragung auf ein Elektron) und Doppelspaltversuch (Auftreten eines Interferenzmusters auch bei Aussendung von einzelnen kurzen Lichtwellenzügen).
  • Quantenphysik: Teilgebiet der Physik, welches sich mit den kleinsten Teilchen und deren Verhalten beschäftigt. Dabei kommen oftmals Gesetze zur Anwendung, welche mit den Alltagserfahrungen nicht vereinbar sind.
  • Quark: Elementarteilchen des Standardmodells der Teilchenphysik, welches noch kleiner als Protonen bzw. Neutronen ist, weshalb unter anderem diese beiden Teilchen aus Quarks aufgebaut sind. Nach derzeitigem Wissensstand gibt es 18 verschiedene Quarks, zu denen es jeweils ein dazugehöriges Anti-Quark gibt (vgl. Antiteilchen).
  • Relativitätstheorie: Sie beschreibt die Wirkung hoher Geschwindigkeiten (Spezielle Relativitätstheorie) sowie großer Massen (Allgemeine Relativitätstheorie) auf das Verhalten von Körpern und wurde 1905 (SRT) bzw. 1916 (ART) vom Physiker Albert Einstein veröffentlicht.
  • Schwache Kraft: Eine Wechselwirkung, welche bei Zerfallsprozessen zur Erklärung des Energie-Verlustes benötigt wird. Die dazugehörigen Mittlerteilchen, die W- und Z-Bosonen, haben eine große Masse und damit eine sehr geringe Lebensdauer, was deren Nachweis erschwert.
  • Standardmodell der Teilchenphysik: Ein international einheitliches Modell, welches alle zur Beschreibung von subatomaren Vorgängen notwendigen Teilchen enthält. Demnach können diese in Hadronen (nicht elementar, da sie wiederum aus Quarks aufgebaut sind) und Leptonen (elementar, können also nicht weiter zerlegt werden) unterteilt werden, bei den Hadronen wird zwischen Baryonen (bestehend aus 3 Quarks) und Mesonen (bestehend aus Quark und Anti-Quark (vgl. Antiteilchen)) unterschieden.
  • Starke Kraft: Eine Kraft, welche anziehend zwischen den Teilchen im Atomkern, d.h. den Protonen und den Neutronen, wirkt, allerdings im Vergleich zur elektrischen Kraft (= Coulombkraft) eine sehr geringe Reichweite hat. Die Starke Kraft kann wiederum auf die Farbkraft zwischen den Quarks, aus welchen die Protonen und Neutronen aufgebaut sind, zurückgeführt werden.
  • Supraleitung: Gewisse Stoffe haben, wenn sie auf eine sehr geringe Temperatur (unterhalb der sogenannten Sprungtemperatur) abgekühlt werden, keinen elektrischen Widerstand, wodurch elektrischer Strom verlustfrei transportiert werden kann. Diese Abkühlung benötigt jedoch sehr viel Energie, weshalb eifrig an Hochtemperatur-Supraleitern geforscht wird, welche bereits bei einer höheren Temperatur ihren Widerstand verlieren.
  • Zirkularbeschleuniger: Ringförmige Teilchenbeschleuniger, in welchen geladene Teilchen mithilfe von elektrischen Feldern beschleunigt (elektrische Kraft / Coulomb-Kraft) und von magnetischen Feldern auf ihrer Bahn gehalten werden (Lorentzkraft – Wirkung des Magnetfelds auf die Ladung). Beispiele für Zirkularbeschleuniger sind Zyklotron (Vergrößerung des Bahn-Radius mit höherer Geschwindigkeit), Synchrotron (Verstärkung des Magnetfelds bei zunehmender Geschwindigkeit) und Betatron.

 

Begriffserklärungen: © by Michael Himmelbauer
Fotocredit: © by BRG Steyr Michaelerplatz (Bildergalerie)

Von damals bis heute – Wetterdaten im Vergleich

Von damals bis heute – Wetterdaten im Vergleich

Im Rahmen ihrer Abschließenden Arbeit (ABA) haben Ines Frambach und Hannah Wimmer (8B) eine eigene Wetterstation gebaut, die im Innenhof der Schule montiert wurde. Mithilfe eines Mikrocontrollers (Arduino Nano) werden nun dreimal täglich Temperatur und Luftdruck...

Wandertag 1B

Wandertag 1B

Am Freitag, den 12. September 2025 wanderte die 1B gemeinsam mit ihren Buddys (Schüler*innen der 6. Klassen) in die Unterhimmler Au. Im Vordergrund standen Aktivitäten zum gegenseitigen Kennenlernen wie Picknicken, der Bau einer Brücke sowie Ball- und Fangspiele....

Wandertag 4AD auf die Dambergwarte

Wandertag 4AD auf die Dambergwarte

Bei bestem Wanderwetter gingen am 12. September 2025 die 4A und 4D mit ihren Klassenvorständinnen Prof. Haberfehlner und Prof. Staudinger-Egger auf den Steyrer Hausberg. Auf der Dambergwarte trugen wir uns ins Gipfelbuch ein und bewunderten die schöne Aussicht auf...

Willkommen im neuen Schuljahr 2025/2026!

Willkommen im neuen Schuljahr 2025/2026!

Am BRG Steyr Michaelerplatz starten wir in das Schuljahr 2025/2026 mit 32 Klassen, 760 Schüler*innen und 85 Lehrenden. Außerdem gibt es in diesem Jahr folgende Änderungen beziehungsweise Neuerungen: Wir begrüßen folgende Lehrende: Mag. Silvia Kohner (TEDE) Dusan...

Eröffnungsgottesdienst 2025/2026

Eröffnungsgottesdienst 2025/2026

Am Dienstag, den 09. September 2025 fand in der Michaelerkirche der Eröffnungsgottesdienst des Schuljahres 2025/2026 statt. Vielen Dank an alle Schülerinnen und Schüler, Kolleginnen und Kollegen, die zu diesem feierlichen Schulbeginn beigetragen haben. Eindrücke der...

Talentekurse 2025/2026

Talentekurse 2025/2026

Am BRG Steyr Michaelerplatz ist uns die Förderung von begabten Schüler*innen ein großes Anliegen, weshalb laufend Talentekurse zu verschiedenen Themen angeboten werden, zu denen sich die Schüler*innen ihren Interessen und Talenten entsprechend anmelden können. Alle im...

Stundenplan 2025/2026

Stundenplan 2025/2026

Der Stundenplan für das Schuljahr 2025/2026 steht fest und kann ab sofort online abgerufen werden.   WebUntis (digitaler Stundenplan)   Gebäudeplan & Raum-Übersicht Das BRG Steyr Michaelerplatz wünscht allen Schüler*innen, Lehrenden und Erziehungsberechtigten...

Empfang der ausgezeichneten Maturant*innen

Empfang der ausgezeichneten Maturant*innen

Am 20. August 2025 wurden die ausgezeichneten Maturant*innen von Landeshauptmann Mag. Thomas Stelzer im Steinernen Saal des Landhauses in Linz empfangen. Trotz Ferien- und Urlaubszeit sind einige Maturant*innen der Einladung gefolgt. Die Schulgemeinschaft gratuliert...

Schulbeginn 2025/26

Schulbeginn 2025/26

Montag, 8. September 2025 8.00-9.25 Uhr: Versammlung der Schülerinnen und Schüler in den Klassenräumen und Übernahme der Klassen durch die Klassenvorstände ab 9.30 Uhr: Schriftliche Wiederholungsprüfungen und Semesterprüfungen ab 11.30 Uhr: Mündliche...